Induction

1. Prove the following formula by using mathematical induction:

$$
1 \cdot 2+2 \cdot 3+3 \cdot 4+\cdots+n(n+1)=\frac{n(n+1)(n+2)}{3}, \text { for all } n \geqslant 1
$$

Let $t_{n}=1+2+\cdots+n$ denote the n-th triangular number. Using the above formula, compute the values n for which t_{n} divides the sum $t_{1}+t_{2}+\cdots+t_{n}$.

Primes, Divisibility and Congruences

2. State whether the following statements are true or false, with complete justifications:
i. An integer $n>4$ is composite if and only if n divides $(n-1)$!
ii. An odd integer $n>1$ is composite if and only if it can be expressed as a sum of three or more consecutive positive integers.
3. If $\operatorname{gcd}(a, b)=1$, determine all possible values of $\operatorname{gcd}(a+6 b, 6 a+b)$. Give examples where these values are attained.
4. Find the last three digits of 23^{2023} in the usual decimal notation. Justify all the steps.
5. Let p be a prime. For any positive integer n, show that the largest positive integer e such that $p^{e} \mid n$! is given by

$$
e=\sum_{j=1}^{\infty}\left[\frac{n}{p^{j}}\right] .
$$

Using this formula or otherwise, prove that if $n>2$, then there exists a prime p satisfying $p \left\lvert\,\binom{ n}{k}\right.$ for all $1 \leqslant k \leqslant n-1$ if and only if $n=p^{r}$ for some positive integer r.

Primitive roots and Quadratic residues

6. State the Quadratic Reciprocity Law. Use it to evaluate the Legendre symbol (123456/951943). Note that 951943 is a prime. You may use your pocket calculator.
7. Find integers a and b such that $5 a^{2}+11^{3} b=37 .{ }^{1}$
8. Given any prime p, show that, for some choice of $n>0, p$ divides the integer

$$
\left(n^{2}-2\right)\left(n^{2}-3\right)\left(n^{2}-6\right)
$$

Can we say the same thing of $\left(n^{2}-2\right)\left(n^{2}-3\right)\left(n^{2}-5\right)$? Justify.
9. Does there exist a rectangle with integral sides satisfying the following two conditions? a) Its length is 14 units longer than its breadth; b) Its area is congruent modulo 2023 to its perimeter. If there exists such a rectangle, find the one with shortest perimeter. You may use your pocket calculator.

Arithmetic functions

10. Let $\tau(n)$ denote, as usual, the number of positive divisors of $n \in \mathbb{Z}^{+}$. Prove the following:
i. $\prod_{d \mid n} d=n^{\tau(n) / 2}$.
ii. $\tau(m) \tau(n)=\sum_{d \mid(m, n)} \tau\left(m n / d^{2}\right)$ where the sum runs through the positive divisors d of (m, n), the gcd of m and n.
[^0]
[^0]: ${ }^{1}$ Enough to find one value of a and one value of b.

